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AN EXTENSION OF A KINETIC THEORY OF POLYMER CRYSTALLIZATION THROUGH THE
EXCLUSION OF NEGATIVE BARRIERS

Jerry 1. Scheinbeim, Louis Petrone, Briam A. Newman
Department of Mechanics and Materials Science
Rutgers University
Piscataway, NJ 08855-0909

ABSTRACT

The simplest version of the Lauritzen-Hoffman (LH) model of polymer
crystallization which applies to infinitely long model polymer molecules
crystallizing on an existing substrate of infinite width, is re-examined. The
mathematical expressions for the model free energy barriers are observed to
take on negative values at high supercooling. Since such negative barriers
appear to be physically unrealizable for the crystallization process, the LH
model is extended by imposing a mathematical constraint on the expressions for
the barriers, to forbid them from ever being negative. The extended model
contains one parameter y which varies from zero to one and is analogous to the
parameter % of the LH model. For all values of y less thar one, thz extended
model predicts a finite lamellar thickness at every supercooling; moreover,
this thickness, at large undercooling, decreases monotonically with increasing
undercooling in agreement with experiment, but in marked contrast to the LH
model which exhibits the well-known 2 catastrophe. The relative
insensitivity of the calculated lamellar thicknesses to the parameter vy

supports the use of vy = 0 as a first approximation for mathematical

convenience in practice.




I. INTRODUCTION

Recently, the crystallization of poly(vinylidene) fluoride (PVF,) in the
presence of high electric fields has been studied both experimentally and
theoretically. Of the four well-known crystalline forms a, §, v, and § (or
IT, I, I1I, and 1IV) of PVF,, the phase with the largest spontaneous
polarization and potential for applications is the g-phase.
Crystallization of PVF, from a concentrated solution of tricresyl
phospate in the presence of a high electric field was observed1 to produce f-
phase crystals, with dipoles oriented in the field direction, during
the initial stages of crystallization followed by the growth of unoriented a-
crystals (non-polar) as crystallinity increased and the tricresyl phosphate
content decreased by evaporation. The decrease in tricresyl phosphate content
and subsequent crystal growth behavior suggests that the local electric field

12'3 studies

in the solution region changes. Other experimental and theoretica
of crystallization of PVF, from the melt in the presence of a high static
electric field have been made, and were found to give -y-phase crystals which
however did not show crystal orientation. As part of the continuing effort to
understand the structure-property relationships of PVFZ and because of its
practical importance, our ultimate goal--despite the complexity of the system
described--is to develop a theory or model which can account for its
crystallization behavior from concentrated solutions in the presence of an
electric field,

As in the case of isothermal crystallization of a and v phase from the

3 a theory of isothermal crystallization of a, 8,

melt in an electric field,
and § phase from concentrated solution in an electric field, would be based on
"clarsical® and "polymer" theories of nucleation and growth in the absence of
an applied field. Most importantly, the nucleaticn barrier or activation free
energy barrier for nucleation would certainly be different in the presence of
the field than in its absence; and this barrier has been seen to be of

fundamental importance in the theories of polymer crystallization, the

4,5

simplest of which is the LH or Lauritzen-Hoffman theory. One possibly




unrealistic feature which seems to have been incorporated into the LH theory
in order to simplify it, is that the nucleation barrier is not constrained in
the theory to take on only nonnegative values.6 The word "barrier” connotes a
positive quantity, and furthermore, the LH theory is based on transition state
theory ‘n which the barrier corresponds to an intermediate configuration or
transition state of the system which is at a free energy maximum relative to
some initial and final state of the system.9 Moreover, the LH theory
exhibits, in contrast with experiment, the é6f catastrophe wherein the
calculated average lamellar thickness 2 suddenly passes through a minimum and
becomes infinite at a temperature, Tc, corresponding to a moderately large
undercooling; and, in fact, the nucleation barrier in this theory is positive
for all T > Tc, is zero at T = Tc' and is negative for all T < Tc for the

4.3 have recently considered.

special case which Lauritzen and Hoffman
Therefore, prior to developing an extension of the LH theory which would
involve ascertaining the effect of an electric field on the nucleation
barrier, we try to extend the 1H theory to larger undercooling by
incorporating into it the assumption that free energy barriers cannot be
negative. Note that, unlike in the LH theory of polymer crystallizationm,
barriers in classical nucleation theory are never negative; however, the
classical theory does not explicitly take into account polymer chain folding,
and for that reason, we have not yet considered modifying the Marand and Stein
theory2 of crystallization from the melt to treat the PVFz/tricresyl phosphate
crystallizing solution.

The remainder of this paper is organized as follows. 1In Section II, the
LH model is described. The kinetic treatment of the LH model is given in
Section II1I. The rate constants needed for this treatment are determined in
Section IV. Next, our extension of the LH model is described in Section V;
the conditions which determine the sign of A¢1, the free energy of formation
of that portion of a model polymer molecule which crystallizes first on an
existing crystal, are found in Section VI. A summary of the expressions for

the barriers in cur model is given in Section VII along with the expressions




for the average lamellar thickness. In Section VIII, the variable
transformations required as a preliminary to numerical integration are
introduced. Results and discussion appear in Section IX, and conclusions are

given in Section X.

II1. THE LAURITZEN-HOFFMAN MODEL

The model to be extended is one versiona’5

of the well-known Laurit:zen-
Hoffman (LH) model of polymer crystallization. Our description of this
version is as follows. The model polymer molecules are assumed to be
infinitely long and crystallize on an existing crystalline face or substrate
which is assumed to be infinitely wide (i.e. the fact that its width is finite
is ignored). A sequence of length £ of polymer segments of width a and
thickness b as well as the volume associated with that sequence--which is
taken to be a parallelepiped of length £, width a, and thickness b--is
designated as a stem. Only stems of length £ can crystallize on an existing
face of length £, but the length £, the lamellar thickness, can vary from
crystal to crystal. Any sequence of length £ of segments of a model molecule
can be placed first on a given face and, upon placement, is designated as the
first stem. The free energy of formation of the first stem is

Apy - Bdy = A$y - O or 8¢, = 2abo, + 2blo - abfAf
where Af > 0 is the free energy of fusion per unit volume at a temperature T
below the melting point T; of the model polymer (i.e. of a crystal of very
large £) and Af = 0 at T = T ; where o is the lateral surface free energy per
unit area (i.e. that associated with the surfaces of area bZ and af of a
stem), and where Te is the surface free energy per unit area associated with
the cilium that protrudes through each of the surfaces of area ab of the first

4-7

stem. Recently, o, has been assumed to be zero; generally, one can

11
assume that 0 < oy S 0. All surface free energies per unit area in the

model are assumeda to be independent of T and £. (See Figure 2(a) of Reference




4 or Figure 22 of Reference 5.) The placement of each subsequent stem

involves:

1. the destruction of the cilium associated with one of the surfaces of
area ab of an adjacent stem already crystallized,
2. an adjacent reentry and the formation of a tigh* fold associated with
two surfaces of area ab, and
3. the formation of a cilium associated with the remaining surface of
area ab of the stem being placed.
Only adjacent reentry and hence only tight folding is incorporated in this
version of the model.

The free energy of formation of the vth stem (v > 1) is therefore

Ap, - B¢, 1 = -abo, + 2abo, + abo, - ablfaf
or

A¢u - A¢y_1 - 25bae - absAf = -E

where A¢, is the free energy of formation of a group of v stems (relative to
A¢0 = 0) and where o is the surface free energy per unit area associated with

half of a fold. Iteration of A¢u - 244,41 E (v > 1) gives
A¢u - 0¢y - (v-1)E
= 2blo + 2abaé - 2abae + uab(Zoe-ﬂAf).

In order that stem additions subsequent to the placement of the first stem be

thermodynamically favorable, i.e. in order that they would in fact occur, one

20
must impose the constraint -E < O and consequently £ > ng. Steus of smaller

length are unstable and disappear. By contrast, A¢; can be positive, zero,




or negative; E > 0 guarantees that A¢y < 0 will occur for finite v. Note the

sign conventions for 4A¢, and E.

III. THE KINETIC TREATMENT OF THE LAURITZEN-HOFFMAN MODEL

4,5 of the LH model is as

Our description of the kinetic treatment

follows. The following assumptions are made:

1. Assume that transition state theory can be utilized to describe the
kinetics of the LH model of polymer crystallization.

2. Assume that the formation (crystallization) of a single stem is an
elementary process or elementary reaction; that the destruction
(melting) of a single stem is in elementary process or elementary
reaction; and that transition state theory can be applied to these
two elementary processes with a single transition state corresponding
to a relative free energy maximum or barrier thus occurring between
each two integral values of v on a plot of A¢y vs. V.

3. Assume that only one stem at a time can be formed or destroyed.

The kinetic problem is to derive an expression for the net rate S, (£,T)

at which stems of length £ (and width a) pass over or surmount the vth free
energy barrier at temperature T. The problem requires consideration of the

following set of connected elementary reactions

B a4 A _»a
0 El 1l & 2 § 3 § 4 ..

where A is the rate constant for the forward reaction v - v+l (v 2 1) and B is
that for the reverse reaction v+l - v (¥2l), and where Ao and Bl are the

. 8
analogous rate constants for the v=0 : v=1 reactions. Solution of this

problem in the steady-state approximation gives

~A-BeB, = SAD

s,(2,T) =




for all v, wh:re Ny is the number of sites or locations available for the
placement of a first stem. The total net rate at whirh stems (i.e. the net
rate including stems of all possible wvalues of 2) pass over the vth barrier at

temperature T is given, for all v, by

-]

Stotal(T) = }; $(£,T)
=1y

where 21 is the smallest allowed value of £ which satisfies the constraint

20
2> —Z%. Note that 2 is a discrete variable--the smallest increment in 2 that

can be made is the monomer repeat length 2u. To .ind 21, first write £ = miu,

20e 2ae/Af

where m is a positive integer. Then 2 > ~Af implies m > 7 , that is, m is
u
Zae/Af
greater than or equal to the smallest integer greater than 7 , and
u

20e/Af

therefore, 21 - [1+INT(X)]2u, where X = ) and INT(X) designates the
u

(¢}
integer part of X. Substituting 2u - RZ% into the expression for £, glves 2

20
- [lil§1131] [—Z%J To a good approximation, it] % K =1 (d.e. X is

20
sufficiently greater than 1) so that £1 = —Z% .

a
Finally, one assumes that E; S(4,T) = —%— JQ S(2,T)d2; and the
2
I= u“ih
1

kinetically-determined average lamellar thickness is then given by
J? £ S(2,T) df

1

I(T) - Jm

4

S(L,T) d2

IV. DETERMINATION OF THE RATE CONSTANTS

To obtain expressions for Ao, Bl’ A and B, one must first determine
expressions for the free energy barriers for the relevant reactions v : v+l (v
2 0). Let E) be the free energy barrier to the destruction of the first stem;
then A¢1+ E1 is the barrier to the formation of the first stem in order that

(A¢1+El) - El - A¢1. Let E2 be the free energy barrier to the formation of




each subsequent stem; then E + E2 is the barrier to the destruction of each
such stem in order that (E+E2) - 82 = E. Now, one does not know the free
energy barrier to the formation of the first stem. At least, one does know
that it depends on what length £' of a fully adsorbed stem of length £
actually crystallizes before the barrier is surmounted. If 2' = 0, then none
of the free energy of crystallization (i.e. -abfAf) is released before the
barrier is surmounted, and clearly, A¢l + El - 2abaé+2b20 and El = abfaf. In

general then, for 0 < £’ < 2,

8¢,+E| = 2abo, + 2blo - abf’'Af and E; - ab(f-2')af.
Since £' is unknown, a parameter % = g% with 0 £ ¥ < 1, is introduced in order
that all possible so-called apportionments of the free energy of fusion abifaf
between the rate constants for the formation and destruction of a first stem
(i.e. for the forward and reverse reactions 0 : 1) can be considered. Thus,
A¢1 + E1 - Zabaé + 2blo - yablAf and El - (1-¢¥> ablaf.
Note that the greater the amount pabfAf of the free energy of fusion which is
in fact "apportioned"” (i.e. the greater the value of ¥ or £’), the smaller the
value of both A¢1 + E; and E, (for a given £ and T). A very similar
interpretation of ¥ has been discussed recently.
Similarly, for each subsequent stem, let 2" (0 < £" < £) be the length of
a fully adsorbed stem which actually crystallizes before the barrier to the

formation of the stem is surmounted. Then

E2 - Zabae - abg"aAf and E + E2 = ab(2-£")Af.

Define the apportionment parameter (1 l% with 0 < § < 1 so that

E, = 2abo, - $abssf  and  E + E, = (1-) ab2af.

Finally, utilizing transition state theory,




- (8¢ +E,+AP) /KT -(Ady+E, ) /KT
Ag - g% . 1t - e 151

-(E+Ez)/kT
i A=fe ;. B~=Be

-E, /KT

where af is the contribution to each barrier as a result of retardations in

the transport of a polymer chain through the liquid to the substrate or vice
B o
versa. Note that 2 does not depend on 6 and that Ay does not depend on ¥ as

required.

V. THE EXTENSION OF THE LAURITZEN-dJOFFMAN MODEL

As implied throughout the above discussion, the application of transition
state theory to the elementary processes of single stem formation and
destruction presumes that there is a single relative free energy maximum9 or
barrier between each two integral values of v on a plot of b, vs. v.
Consequently, A¢1+E1, El’ EZ' and E+E2 should never be negative Clearly, El'
(1-y) ablAf and E+E2 - (l-ﬁ)ablAf are never negative; however, the expressions
given above for A¢1+E1 and Ez can be negative. In fact, E,, for example, is

ae

2
negative for all 2 such that —— < £ for a given Af, ¢, and Og- We propose to
Af

extend the LH model by incorporating into the model the assumption that free
energy barriers cannot be negative, i.e. only apportionments of the free
energy of fusion which result in a nonnegative barrier will be allowed.

In order to incorporate this constraint into the model, first note that
A¢1+E1 - Zaboé + 2blo - yablaf is never negative when 8¢, is positive since
then, abiAf < 2aboé + 2blo always holds and pablaf < Zabaé + 2blo follows.
However, when A¢1 is negative, the expression Zabaé + 2blo - $ablAf can be
negative. The requirement that 4¢; + E; 2 0 hold when A4, 1s negative implies
that one is not allowed to apportion all of the free energy of fusion ablaf
when A¢, 1s negative. If the amount pablAf of the free energy of fusion which

is apportioned were to exceed 2abs, + 2blo, then A¢,+E, would be negative.



The maximum amount which can be apportioned is indeed Zabaé + 2bio, and
therefore one has, when A¢1 <0,

A¢1+El - E(Zabaé + 2bfo)
where § is an apportionment parameter with 0 < £ < 1. Using (A¢1+El) -El -

A¢1 or El - (A¢1+E1) - A¢1 gives
El - E(Zabaé + 2Zblo) - (Zabaé + 2blo-abiAf) = abﬁAf-(l-f)(Zabaé+ 2blo) .

Observe that the requiiement that A$,+E, 2 0 holds when A¢; is negative is
equivalent to the phys: :ally realistic requirement that the barrier E, to the
destruction of the first stem cannot be smaller than the free energy increase
(—A¢l) that occurs upon its destruction. Note thit ab!Af-(Zabaé+2b£o) -
-A¢y. Also, this physically realistic requirement implies that an adsorbed
first stem cannot completely crystallize before the barrier to the format.on
of that stem is surmounted, i.e. that the upper limit on £' is less than £
when 44, is negative. This upper limit on £' is determined later. For 8¢y >
0, the expressions A¢1 +E - 2abaé + 2bfo - YabfAf and El = (1-y)abiaf scill
hold with 0 < vy <1 and 0 < 2’ < 2.

At this point, a simple change of variable is introduced for convenience.
Define A = 1-¢ with 0 < X =<1,

Now observe that although the free energy of fusion is abfAf when Ay 1is
positive or negative, the free energy of fusion which can be apportioned is
abfAf vhen A$; is positive but is (2abo, + 2blo) when A¢, is negative. Also,
the free energy of fusion that is in fact apportioned is pablaf when Ad; is
positive, but is l(2abaé + 2bfo) when A¢1 is negative. Clear.y then, the
fraction of the free energy of fusion which can be apportioned that is
apportioned is % when A¢1 is positive, but is X when A¢1 is negative. 1If we
always choose the same value for A and ¥, then over the whole range of values
for A¢1, the fraction of the free energy of fusion which can be apportioned,
has the same value. Let v dennote any particular value which is ctosen for

both ¥ and A, where 0 < v < 1.




10.

Note that equal values of ¥ and )2 do not imply the same value of 2’

(except when Aél = 0 as will become evident); as usual ¢y = lé, but an
expression for A in terms of 2’ or vice versa remains to be obtained. In our
approach, then, £' depends at least on the sign of A¢;, and yet we utilize
only one parameter, y--the fraction of the free energy of fusion which can be
apportioned that is apportioned--which is a constant: over the whole range of
values for A¢1.

In summary, the barriers in terms of the apportionment parameter vy are

A¢1 + El - (1~1)(Zabaé + 2bko)

1A
()

} for A¢1
El = abfAf - 7(Zabaé + 2bfo)

A¢l + E1 - Zabaé + 2bfo - vabiaf
} for A¢1

v
=

E, - (1-v)absaf
where we now observe that (1-1)(2aboé + 2blo) = 2abaé + 2bfo - vyabfaf when A¢1
-0, i.e. A¢l + El is a continuous function of £ and Af at the points (£,Af)
for which A¢; = 0. Note that the greater the value of the apportionment
parameter vy, the smaller the value of both A¢1 + El and El'

An expression for £’ is not needed in order to evaluate STotal(T) and
2(T). However, an expression for £’ in terms of A and vice versa will be
derived in order to see how £' depends on other quantities in our model.
Given A¢1 + El - (1-A)(2abaé + 2bfo) for A¢1 < 0, one can first find ¥ when
64, < 0 holds in terms of A by equating the expressions

(1-A)(23baé + 2bfo) = 2abo; + 2bfo - pabiaf

whence

Zabaé + 2blo
¥ - "( abiAf ]

or
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20!
&, 20
¥ - '\[EAf M aAf]

Clearly, equating these expressions and expressing ¢ when 4¢; < 0 in terms of
A is valid since decreasing 2abaé + 2blo by an amount $ablAf must be

equivalent to decreasing Zabaé + 2blo by A(2abo_ + 2blo). Note that the

20!
expression |77 + 29 is always less than one when A¢, 1s negative. To see
26 T anf y 1 &

this, simply observe that A¢, < O implies 2abo, + 2blo < ablAf, and then

divide both sides of this inequality by abfaf. But ¥ = 5= for all values of

o

A¢1 so that

20’
e . 2
2 - *2[1Af + aAf]
Note that since ) cannot exceed one, the largest possible value of 2', {.e.
20’
the upper limit on 2', is £ {;Z% + ;%%} for Aél < 0; as mentioned previously,

this upper limit is indeed less that £ for A¢, < 0.
For completeness, one can also find A when Aél > 0 holds in terms of ¢ by
equating the expressions

(1-A)(2abaé + 2blo) = Zabaé + 2blo - YabiAf

whence
Y
A= N
20 . 2
J7¥ 3 anf

Clearly, equating these expressions and expressing ) when a¢, > 0 in terms of

¥ is valid since decreasing 2abaé + 2bfo by an amount yabifAf must be

equivalent to decreasing 2abaé + 2bfo by A(Zabaé + 2blo). Here again, yp = fl,
L 1 20, 20
and A = 4~ [ EEZ—:——;;- ]. Note that [TZ? + EK§J is always greater than one
IAf  aAf

when A¢1 is positive.

In summary, then, for A¢1 < 0, one chooses a value from zero to one for

20!
the parameter v, whence A = v, and then calculates ¥ = A(IZ% + ;%%]. For A¢1

> 0, one chooses a value from zero to one for the parameter -y, whence Y = «,

¥
Ty, 2 T
2af 7 asf

and then calculates A =




12.

} for A¢1 < 0

e . 2
¥ = A[mf + a.Af]

Y~y
} for A¢1 20
\ ¥
2% . 20
faf  aaf
206 20
And, for all A¢1, one can calculate 2’ from £ = $¥2 or from 2"*2(33% + aAf]‘

Incidentally, the constraint Zabaé + 2bfo - yabfAf = 0 combined with 0 <

¥ < 1 implies that the inequality

298 . 20
0 < ¢ < the smaller of 1 and {TK% + aZf]

must be satisfied, and clearly our theory has satisfied it.
Similarly, the constraint abfAf - A(2aboé + 2blo) 2 0 combined with 0 < A < 1

implies that the inequality
1

0 < A < the smaller of 1 and 507

Ze , 20
260f ° aaf
must be satisfied, and clearly our theory has satisfied it.

The approach developed above can readily be applied to incorporate into
the model the constraint that E, be nonnegative. Here, E, - Zabae - QablAf
can be negative when E is positive, and E 1s always positive (except when £ =
Zae/Af, which gives E = 0). The requirement E2 2 0 implies that one is not
allowed to apportion all of the free energy of fusion abfaf. 1If the amount
JabiAf which is apportioned were to exceed 2abs,, then E, would be negative.
Therefore, one has E2 - anbae where n is an apportionment parameter with 0 =<

n <1. And E+E2 - -Zabae + ablAf + nZabae = abfAf - (l-q)Zabae. For




13.

convenience, make the change of variable 6 = 1l-n with 0 < § < 1 so that for

all £ and Af
E2 - (1-0)2abae and E + EZ = ablAf - 92abae.

Observe that the barrier E + E, to the destruction of the second and each
subsequent stem cannot be smaller than the free energy increase E that occurs
upon its destruction, which implies that an adsorbed second or subsequent stem
cannot completely crystallize before the barrier to the formation of that stem
is surmounted, i.e. that the upper limit, determined below, on 2" is less than
2.

To find an expression for £" in terms of #, one first finds $ in terms of
§ by equating the expressions for E,, i.e.

(1-6)2abo, ~ 2abo, - $ablaf

whence

20
e
% -4 TAf -

Clearly, equating these expressions and expressing $ in terms of 4 is valid
since decreasing 2abo, by an amount Qab2Af must be equivalent to decreasing

2abae by §2abo. Note that the constraint 2abo, - @ab!Af 2 0 implies that the

20
inequality 0 < 3 < fﬂ% must be satisfied; since 0 < # < 1 holds, we have

o
indeed satisfied this inequality. Also note that 72% is always less than or

20
equal to one since £ = ng has been established. (Incidentally, 2abae -
20 20
@ab!Af 2 0 does not imply constraints £ < 5—? , of =< 529 , Or o 2 Qiii.)
A

n 20
Finally, recalling that % - %— and substituting above gives {" = ﬂ—z%.

In the special case y = § = 0, our mode. reduces to the case y = @ = 0 of

the LH model which permits negative barriers for nonzero 3.
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VI. DETERMINATION OF THE SIGN OF A¢1
At this point, one needs to determine when A¢1 is positive, zero, and
negative. Now Agy = Zabaé + 2bfo - abfaf > 0 implies bl(20-aAf) 2 ~2abaé; and

there are three cases to consider,

~2abaé
b(20-aaf)
is always satisfied since £ is always greater than zero, and hence Ady > 0

holds.

Case (a): 20 - aAf > 0 or Af < Zg. Then the inequality £ >

Case (b): 20 - aAf = 0 or Af = %g. Then A¢1 - Zabaé, which is always

positive or zero depending on Og-

Thus, combining cases (a) and (b), we have A¢1 2z 0 for all £ when Af <

%9, where A¢1 = 0 when both o, - 0 and Af - Z%.

Case (c¢): 20 - aAf < 0 or Af > 2%. Then A¢1 2 0 implies -bf(aAf-20) =

a'
il

. ' _Af
Zabae or £ < 20 - 20.

Thus, when Af > %2, A¢1 2 0 holds for 2 < 20, and
1-
aAf

44, = 0 holds for £ = Ly. (Observe that as Af - g% from values greater than

%g’ 20 <+ o,) There is, however, one further condition to consider here.

20, 20e
Recall that £ = AT has been established. If L, < AF holds, then £ > 1,
holds and consequently A¢; < 0 would hold for all 2. To determine when £y <

20!
e
o — 20 ,
ng holds, simply write —-Agz— -Z%, and noting that ﬁ%f < 1, rearrange this
T aAf

’

o_-0
inequality to get ;%% < eaee. Now, if o, < ¢;, this inequality would be ;%%

20

< 0, which is never satisfied; hence 10 < —K% never occurs when Op < aé. 1f
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2‘:'e 2a Ieq
o, > Ué. 20 < zf occurs when Af > &= [

. , 20
]. Thus, if % > % and " < Af

e a ae-aé
<20 [Ze Aé. = 0 holds for £ < 2, and A¢;< O holds for £ = 2,, but for af
= a oe-aé i 1= = *0 1= = %0
2 ¢
> & [0 -a'] . A¢1 < 0 holds for all £.

e e

VII. EXPRESSIONS FOR Sq...; (T AND 2(T)

If o = aé, our model with no negative barriers has

e

(1) 8¢;+E; = 2abol+2blo-vablAf for Af < a”

(2) 8¢ +E, = 2abo/+2bLo-yabiAf for Af > a’ and £ < £,

(2) 84 +E; = (1-7)(2abol+2bLo) for Af > 22 and £ = 4,

and if o > aé .

(1) A¢y+E; = 2abo)+2blo-yablAf for Af < 22
g

(2) ¢ +E; = 2abol+2blo-vablAf for %ﬂ < Af < %ﬂ [a ?a,] and f#=f,
e [
a

(2) A¢1+E1 - (1-7)(23baé+2b£a) for §2 < Af = gg (ae?oé] and £24

[+ 4
{(3) A¢1+El = (1-v) (2aboé+2bla) for Af > -i—- [o ‘fa,]

The purpose of categories (1), (2), and (3) will be seen shortly.
When A¢1+E1 - Zabaé + 2bfo - vabiAf, El = (l-vy)ab2Af, which we call Case
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When A¢1+E1 - (1-1)(2abaé + 2bla), El - abfAf - 7(2abaé + 2blo), which we
call Case 1I.

One always has

E2 - (l-0)2abae

E+E2 - -Zabae + ablaf + E2 = ablAf - GZabae
Also,

NaAn(l- )
S(2,T) = 00 A7

B
1- % e §

A

where B - o B/KT 21 _ (1E/KT

- (A¢1+E1)/kT
Y .

and A, = B e

0
2abaé 2abae 24 20e
Abbreviate ¢’ = T S ™ "RF * ®™ aAf ° and recall 21 - “Af Then
¢ _ abaf ac _ 2bo E_ c
— = , - = 5= , and = -c + 5 2. For Case I,
21 kT £1 kT kT El \
Ad,+E 2abo’
MR LI B et g
E,-E ) (1-6)2abo
b - LAl ——2 - - aene - b
For Case II,
A¢,+E (1-9)(2abo’+2blo)
— s - (1-ye’ + f (1-7)2
El'EZ _ ablAf-1(2a93é+2b£a) ) (1-0)Zabae c
kT kT

For Case I,

ﬂNoe°c' e-(a-y)cl/ll (l-ec e-c!/ll)
SI(I,T) - 1

o€ o CUE , o(I-B)c -(L-M)ck/h

For Case 1II,

ﬂNoe'(1'7)c' e-(1~-1)ac2/21 (1_ece-c£/21)

S118 D) = 7T e e, J(-8)e ve - (L-amek/E)
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For any Af in category (1), then,

j:ll SI(I,T)dI

éi%al(T) = —_— I“ §;(2,T) d2  and 2(1)(T) _
u 21

glsl(l,T)di
For any Af in category (2),

£

(2) 1_ (%0 1

STota1 (D) = z, Ix 5;(£,T)de + 3 I: S;1(2,T) df
1 Y 7%

and

2
0
le £57(2,T)de + I:oz S17(2,T)de

221y - L
Izg $;(2,T)d2 + f;osll(z,r)dz

For any Af in category (3),
I?llsII(ﬂ,T)dl

IISII(E’T)dI

For purposes of comparison, the LH model which permits negative barriers
has, for all £ and Af,
A4, +E) = 2abo) + 2blo - YabfAf and E, = 2abo, - $abiaf

so that
E.-E

1 2-<1-¢+$>—%Iz-c

and
e C -(a~¢)c£/21 (l-ec -cl/fl)
s p 1y = o : -

1-eS e C2/8 4 o o-(1-¥+d)ct/a;

and

IZ s (g Tyae

I: s(IH) (s Tyap
1

As is the case in the LH model, our model has two parameters. The most

Sforal (8T = Ii J: s g Tyag ana 2 (1) -

logical choice for # is # = y; however, even with § = vy, our integrals cannot

be evaluated analytically. There seems to be no special case (other than § ~
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vy = 0) for which they could be evaluated analytically. At this point then, we

proceed without setting § = 7.

VIII. EVALUATION OF THE Sq. .., (T) AND 2(T)--THE VARIABLE TRANSFORMATIONS FOR

THE NUMERICAL INTEGRATIONS

The required numerical integrations were easily performed interactively
on the VAX using the IMSL subroutine DQDAGS. Integrals to be evaluated using
DQDAGS cannot have an infinite limit of integration. One way to proceed
before using DQDAGS is to make a change of integration variable. Although
DQDAGS can integrate functions with endpoints singularities (when the
endpoints are finite), a change of variable which results in a transformed
integrand which is bounded at all points including the finite e dpoints in the
new range of integration, is preferable to a change of wvariable which yields
an improper integral albeit with finite integration limits. For each of the
integrals appearing in Séi;al(T), Séiial(T), and Ségial(T), a variable
transformation which resulted in a proper integral was in fact found. The
same transformations did not transform the corresponding integrals in the
numerators of 2(1)(T), 2(2)(T), and 2(3)(T) into proper integrals; however,
the transformed integrands were of the form (-1n x)f(x) with the singularity
resulting only from the factor ln x as x » 0. This endpoint singularity could
be handled by DQDAGS.

Consider first the integral in S(l) (T). The variable transformation

Total
consists of defining

x = ollMC - (L-M)cd/f

Note that x(f - =) = 0; the constant e(1°7)c, i.e. the f-independent factor,

is chosen so that xX(f = 11) = 1. Solving for £ in terms

: ln x gl 1
of x gives £ = 21[1 - e provided v » 1. Then d2 = '_£§7;73— () dx.

a-y
Furthermore, e~ (@-T1)¢i/2y _ -(a-7)c ,1l-v e S/l L o€ 41T | ana
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o (1-1el/2y _ -(1-7)¢ 4 o6 that

-c'g-(am)e =15
s (my - To® ° o N S T LA Ly ax
Total lu (1-9)c 0 1 X
1-x177 4 e{l-0)e o-(A-7)e
Simplifying gives
-1 1
-¢! -(a-7)c = i
s oy D02 ° ot xrastty
Total Iu (1-v)c 0

1-xT 4 o (6-1)e 4
This is one of the integrals that was evaluated numerically by DQDAGS.
Designate the integrand above as fl(x). Using the same variable

transformation to evaluate the numerator of 1(1)(T) gives

1 1
1
2D epy - Jots [1'c nq)c} £ (x)dx g, Jot1n 0f (0
o I g e

Io £ (x) dx

1
IO fl(x) dx
£
Next, using the same transformation on the integral Iio 81(2,T) df
1

appearing in 5(2) (T) gives
Total

14 e'c'e°(°'7)cll

where
- X(lﬂlo) - 3(1'7)0 e-(l-?)Clofll - e(1-'1)0 e-(l-y)c‘/(l-a)

with 20 - 20é/(1-a)Af as defined previously.

2
Similarly, the integral 12 ISI(ﬁ,T)dl appearing in 2(2)(T) becomes

2 pNye S e (@ 1)C 1
0 0 1
Izl ISI(I,T) df = T-7)e {21 Jxofl(x)dx + (1 1)c J (-1n x)fl(x)dx}

A different transformation is made on the integral IOSII(z'T) df also

appearing in Ségzal(T). Here, define

e(1-7)(c-c") -(1-T)acl/ly
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Again x(£ + =) = 0; the constant e(l'y)(c'c') ir chosen so that X(f'fo) - X3,

)4
which is given above. Solving for £ gives £ = ;% [c -c'- %1*57 ] provided y =
2 ’
1. Then df = - ff‘;j%g‘ (%) dx. TFurthermore, e (1-Mact/y _ -(1-v)(c-c’)

1 -{(¢-¢’')(1l-av) 1l-av
e-ci/tl - e-(c-c')/a x(1-7):: -(1-a7)c£/£1 - a x(1—1)0 .

, and e

Substituting gives

BN e (11’ o= (L1 (cc)
Ij S;q(4,Tde= —2 a 1
0 -y)ac

[c-c'] 1
° 0 x[l-ece' a )y (1-y)a ] 1
J: _[c-c'] 1 -[c-c'](l-a y lrax ) ax
_aC a -Ya -8)c _vc -Y)a
l-e” e x(l + e(1 8 e ’ e ! x(l )

c-C 1
gNy e (11, J Xg Le%e [ a ] Ld-7a

(1-v)ac 0 _[c-c'} 1 _[c-c
1-ee o x(l-y)a + e-(ﬂ-v)c e e a

'] l-av
«(1-7)a

Designate the integrand above as fz(x). Similarly, the integral

J: 2571(2,T)de appearing in 2(2)(T) becomes
0

-(1-v)e
BNge 21 fee-ety , [0
JzéSII(I,T)dE- T Tyae & ‘1]0 £, (x)dx+ ?T‘?TEE Ix (-1n x)fz(x)dx}

Thus,

e‘(l‘Y)Cz

(a-7)c N
(2) ANy e 4y 0 1 (%o
Stotal(™) = |77, (1-7e Ixofl(x)dx}+[ I, (-vac Jo fz(x)dx)

and
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ANy 20 25(2, T)dl} [BN Jm ISII(E,T)dI]

s(2)
ﬁN Stotal(T)

2(2)(T) -

with the appropriate expressions for the integrals and S%ﬁ%al(T) to be

substituted above.
Finally, consider the integral in S%i%al(T). The variable transformation

to be made on this integral is

N e(1-—1)ac e-(1-7)ac£/11

Again x(£ + =) = 0 and the constant e(l-y)ac is chosen so that x(!-ll) - 1.

Solving for £ gives £ = 1, [1- -?ij%§;§“ ] provided v » 1. Then df =

2
- ?TTQ%EE () ax. Furthermore, e (I-mack/ly _ o-(l-mac , = -cb/l) _
1 l-ay
e C x(1-7a , and e (l-av)el/ly _ o -(1-ay)c x(1" 1% o thae
ﬂN (1-1)(C'+QC)2 1 I Pa
s&3) (1y - 1 I (3-x ) dx
Total u (1-v)ac 0 1 l-av

1-x{1- e | o-fc y(c'+ac)  (1-a

Designate the integrand above as f3(x). Using the same transformation to
evaluate the numerator of 2(3)(T) gives

Il(-ln x) £ (x) dx
0

1
(I-7)ac I ¢ ax
o

231y =2y +

IX. RESULTS AND DISCUSSION
A VAX FORTRAN program was written to evaluate the required mathematical
expressions. All calculations were done double precision using the model

parameter values given in Figure 3 of Reference 4; namely, a =b = 5 x 1078
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cm, o = 10 erg/en’, o, = 100 erg/cm?, TS = 500 K, ah = 3 x 10° ergs/cm’, and

Af = (T, -T)ah/T;, where Ah is the enthalpy of fusion at T = T . The average
lamellar thickness calculated from the LH model is independent of Ogt this is
true for our model only for Af < %g’ however. Other quantities such as

i1
STotal(T) do depend on o, even in the 1H model, and physically, one expects 0

£ 0! =< G- In the case oé = 0, our model is slightly simpler, for then

e
A¢1 + El = 2blo - yabiAf
af < &
El = (l-vy)abtAf
A¢1 + El = (1-v)2blo
Af>2—a

El = abfAf - y2blo

Let us investigate our model in detail for the case aé = 0 first; this is also
the somewhat arbitrary choice for o, made for the calculationsl:? for the LH
model. For the values of a, o, T;, and Ah given above, the temperature T* for
which af = 22 js T+ = 433k,

Given the parameter values above and now with the choice f=y, the

calculated average lamellar thickness vs. temperature curves (! vs T) are

plotted in Figure 1(a) for the selected values of y = O, %, and %. (Results
for v > % will be discussed later.) Some of the data used to construct these
plots is given in Table I. (For Af < %g, the average lamellar thickness is

given by the expression for 2(1)(T) given previously and for Af > %g' by the
expression for 2(3)(T) also given previously.) Clearly, 2 decreases
monotonically with decreasing T in agreement with typical experimental
behavior. For most supercoolings, the magnitude of the 2 values is of the
order of 25-125A, which is quite reasonable. Note that at least for all
values of Af > 2%, 2 at a given T increases with increasing y. Also, the
numerical results shown in Figure l(a) indicate that ? vs. T is relatively

insensitive to the value of 7.
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For comparison, we have reproduced part of Figure 3(b) of Reference 1 as
our Figure 1(b), which shows the LH model 2 vs. T curves with 3 = % for the
selected values of y = 0, %, %, and %. Some of the data which we calculated
in order to construct these plots is given in Table II. The LH model ¥ = 0
curve is identical to cur 49 = 0 curve. For Af < %g’ each of the LH model "y
curves" is qualitatively similar but not quantitatively identical to its
corresponding "y curve" presented in Figure 1(a). Recall that the
quantitative difference arises from the fact that the barrier E, has been
constrained to be nonnegative, i.e. E2 - (1-0)2abae. For Af > %g, however,
the LH model ¥ curves are in marked contrast to the ¥y curves; in particular,
for each y curve, 2 approaches infinity asymptotically as Af approaches %%.
This is the behavior which is known as the §f catastrophe.

One point is worth emphasizing here; namely the relationship between «

and . In both our model and the LH model, ¢ = %L, but this ratio in the I1H

model is a constant, whereas in our model

20
—e 20
i (2Af+aAf] b4y =0
Y =
For the case aé = 0, this becomes
20 2g
¢-
¥ oAf < %g

Now, for any given ¥, say wj’ ? in the LH model is infinite for all af 2> E%i;
J
and for all Af > EQ%’ there is no finite value of 2 for any ¥ = ¢J.
J

Equivalently, a value of y 2> ¢j is not possible for a chain-folded system for

all aAf 2 Ezg, that is, high values of ¥ do not lead to chain-folded polymer
]

crystals at high enough supercooling according to the LH model. Experiment,
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however, gives chain-folded crystals at high supercooling with an average

lamellar thickness that decreases monotonically with decreasing temperature.

As we have seen, our one-parameter (i.e. 7v) model with o, - 0 does reproduce

this high supercooling behavior. And yet, high values of ¥, i.e. of the ratio

%L, are not associated with our high-supercooling chain-folded systems. To

see this, first introduce the dimensionless quantity x, where 0 < x < 1. Then
20

for any Af = Xa' Y= ;%% = yx. Since y cannot exceed one, ¥ in our model

cannot exceed xj for any Af = where xj is any given value of x. But this

Xx;a’

3

is exactly what was found for ¥ in the 1LH model, i.e. that a value of y

greater than or equal to ¢j is not possible for any Af 2 Ezg. Thus, for af >
3

%g, our model, through the imposition of the constraint that barriers be

nonnegative, places exactly the same upper limit, ;%%, on our ¢ that is

20

predicted for ¥ in the IH model. However, for Af > g+ our model, unlike the
LH model, predicts 2 vs. T in qualitative agreement with experiment.

Th..s, the selected calculations done for our modzl indicate that, for the
case g, = 0, our model does pot exhibit an infinite average lamellar
thickness. Most importantly, our model predicts ? vs. T curves which are
monotonically decreasing with decreasing T in agreement with experiment. That
is, we have successfully extended the LH model to higher supercooling.

Also, this success, coupled with the numerical results shown in Figure 1(a),
significantly increases our confidence in using vy = 0 as a first approximation
for mathematical convenienc> in practice.7 Finally, our results show that the
62 catastrophe of the LH theory is related to the failure to exclude negative
barriers and moreover that the LH approach to polymer crystallization is in
itself valid for high supercooling--given that negative barriers are
forbidden. Prior to this work, the LH approach had always been described as
one which is invalid at high supercooling.

One set of results with § » vy is presented in Table I11. Here we see
that for vy = % and § = 1, the calculated 2(T) differ only slightly from the

case with vy = % and § = %.
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Next, we investigated our model for g = 0. (Recall that 2 for the LH

model is independent of ¢! and that our model 1s independent of o for Af <

e e
%9.) Using the same values for a, b, o, Ogs T;, and sh as above and again
with § = 4, 2 vs. T curves for o/ = 0, 60, 100, and 150 erg/cm2-~each with

v - %--are plotted together in Figure 2. Some of the oo ¥ U data used to
construct these plots is given in Table IV (and the g, = 0 data has been seen
previously in Table I). From Figure 2, we see that 2 decreases monotonically
with decreasing T for 0 < o; = Oy 8S well as for o, = 0 and that 2vs. T is

relatively insensitive to the value of Og S0 Thus our conclusions made

e
immediately above for the case Oe ™ 0 are valid when 0 < Oq < 0,. Foro, =
150 erg/cmz, there is a relative minimum in 2 vs. T near T = 405 K, and the
curve passes through a small and "diffuse” relative maximum at a lower
temperature. Recall that one expects 0 < aé < o, SO that with o, =
100 erg/cmz, o, = 150 erg/cm2 may not be realistic but is examined in order to
explore the model predictions as a function of o_.

The relationship between ¥ and % with aé » 0 is worth emphasizing at this

point. 1In doing so, one difference between the cases o, = 0 and o, » 0 will

be found; namely, ¥ can exceed ¢j for some Af = E?% when aé “ 0, To

o

reiterate, in both our model and the LH model, p = , but this ratio in the

™

LH model is a constant, whereas in our model

20!
¥ [ﬂ% + %g—f] 24,(2,T) < 0
Y(L,T) =
¥ A¢1(2,T) =20
where the notation ¥(£,T) and A¢1(2,T) emphasizes here the dependence of ¥ and
Aél on £ and T. (The T dependence, of course, enters through Af.) Recalling
the conditions which govern the sign of A¢1 then gives, when o

> ’
e ae
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g
for all 2 when Af > 2 [ £ ,)
a \0 -0
20 [ e )
¢ %

e
for £ = 20 when re < Af = %2

2% , 29
T (1af T anf

¥(2,T) =

g
for £ =< 20 when 29 < Af = e [ £ ,]
a a

o_-0
~ { e ‘e
for all £ when Af < ﬁg
and when oo = aé
20'
¥ [IK% + %%?J for 2 = 20 when Af > %g
v(£,T) - { for £ < 20 when Af > %g
i { 20
for all £ when Af < Y
20é
where 20 - ——Aﬁz: . Furthermore, on an 2 vs. T curve, one has
1- aaf
20!
v [;*9 * 39—] 84,(2,T) = 0
B2, - Af bt
¥ A¢1(2,T) >0

where the conditions which govern the sign of A¢1(2,T) are those given above
for A¢1(£,T) but with £ replaced by 2. Therefore, the temperature TO of a
point (20, Ty) on an ? vs. T curve and at which A¢1(2,T) - A¢1(10,T0) -0 is
the solution to the following non-linear algebraic equation in the one unknown
T:

221y - 2,

or
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2
0 20!
2S.di+ £S8. .44 e
Ill 1 I?O 11 Af
2 1 - 29
aAnf

0
£1 SIdl+ I;OSIIdl

If 0o, > o, , Ty will correspond to a value of Af in the range %ﬂ < &f =<
20 {_%e
re [;;:;Z}, but if Oe S oé, To will correspond to a value of Af in the range
Af > 22,
a

Rather than attempt to solve the above equation iteratively, one simply
plots the left-hand side 2(2)(T) vs. T and the right-hand side IO(T) vs. T on
the same graph, and Tp is giveu by a point of intersection of the two curves.

Note that as Af approaches %9 from values greater than %g’ L, approaches

infinity and that 2, decreases monotonically with decreasing T for Af > %g.
For each of the 2 vs. T curves with o/, » 0 , we found one point of
intersection (20, To), which is designated on each curve by an open circle.
We also found that 2(2)(T) > 20 holds when T < T, and that 2(2)(T) < 20 holds
when T > T,. Thus, A4(2,T) < 0 holds for T < T, and A¢(2,T) > 0 holds for T >

Tg- Our final result is that, on an ? vs. T curve,

2% , 22
v |[—=+ 0<T=T,
¥ - 28f  asf
v TgsT<T
Note that if the dimensionless quantity x, 0 < x < 1, is again introduced by
20 aoé
writing Af - Xa’ then ¢ = 1x[5~— + 1] so that, unlike the case aé = 0, ¥ can
o

exceed X5 for some Af 2 %2;, where xj is any given value of x.
J
Now, upon proceeding to consider results for ¥y > % , our basic
conclusions--especially the fact that we have removed the §2 catastrophe at
high supercooling--remain intact; however, we do pnot obtain 2 vs. T curves

vhich are monotonically decreasing for all T when vy is "sufficiently" large.

Using the same values for a, b, o, o Tm°, and Ah as previously and again

el
with § = v and oy ™~ 0, the calculated 2 vs. T curves for the selected values

of v = %, %, .90, and .95 are plotted in Figure 3(a), and the curve for y =
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.99 appears in Figure 4. Some of the data used to construct these plots is
given in Table V. The effect of v on 2 as a function of T is readily

apparent. First, the curve for y = % appears on closer examination, to

exhibit a discontinuity or break in its slope at the temperature T = 433%
for which Af = 2%. (This statement will be qualified later.) As for 7 = %,

2 for v = %,.9, .95, and .99 does decrease with decreasing T for all T for
which Af > 2%, and there appears to be a break in the slope of 2 vs. T at T =

T*. Unlike for 7 = %, the higher y curves pass through a relative minimum at

20,
a’

occurs increases with v (for y = %, it occurs between T = 440 and 433%K and so

a temperature for which Af < the temperature T, at which this minimum

can hardly be seen on the plot.) Also, over the interval T < T,, 2 vs. T is
at a relative maximum at T = T*. Finally, note that 2 vs. T curves for .99 <
¥y < 1 are qualitatively similar to the y = .99 curve and do not exhibit an
infinite average lamellar thickness. The numerical integrations in the
expressions for 2(1)(T) and 2(3)(T) could not be done for vy = 1 as a result of
the factor (l-v) appearing in various denominators.

For comparison, we have reproduced part of Figure 3(b) of Reference 1 as
our Figure 3(b), which shows the LH model 2 vs. T curves with $ = Y for the
selected values of ¢y = %, %, .90, and .95. Some of the data which we
calculated in order to construct these plots is given in Table VI. These LH
model ¥ curves exhibit the §f catastrophe as Af approaches %%, as do all LH
curves for .95 < ¥ < 1. The curves for .95 < ¥ < 1 are similar to the p ~ .95
curve; since integrations can be done analytically in the LH model when Q -3,
2 vs. T for y = 1 was able to be obtained.1

Thus, for high enough v, our ¢, = 0 model 2 vs. T curves appear to have a
break in slope at T = T*, We suspect that there is indeed a break in slope at

T = T* because the relation

20 2
b= T arf Af =2 ¢
¥y Af < 22

a
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implies that %% is discontinuous at Af = %1; however, we have not evaluated %%
at Af = %g. The break in slope is apparently indiscernible up to 7y values of

about %, where the slope of 2 vs. T has the same sign (positive) regardless of
whether the point Af = %g is approached from values of Af higher or lower than

%z. As v increases, however, the break becomes pronounced with the
concomitant appearance of a relative maximum in ? at T = T* and a relative
minimum in 2 at T = T,; recessarily then, the slope of 2 vs. T as Af
approaches %9 from values less than %g becomes negative. We will refer to
this undesirable behavior, manifest at high values of v, as the ? anomaly.
Unlike the 64 catastrophe in the LH model, the relative maximum in 2 vs. T, as
noted above, always appears at Af = %E for all values of vy given that ge = 0.

Next, we consider Tg * 0 for high values of y. The 2 vs. T curves for %
= 0, 60, 100, and 150 ergs/cmz--each with y = % --are presented in Figure 5.
The curves pass through a common relative minimum between T = 440 and 433% K
(for which Af < %g ), and then each curve rises and passes through a relative
maximum, that maximum being relatively higher and occurring at higher Af the
larger the value of aé. At each maximum, there would appear toc be a break in
the slope of 2 vs. T. Having passed through its maximum, each curve decreases
monotonically with decreasing T thereafter.

One should be careful to note that what appears to be a break in the

slope of 2 vs. T when o, * 0 is probably not a break in slope; Qli;%ill should
be continuous for all relevant T. Whether a break in the slope of 2 vs. T
occurs at Af = %2 when g, * 0 as was presumed true for g, = 0 cannot be
determined conclusively from the appearance of the graphs, although the break
appears to be absent.

Qualitatively similar 2 vs. T curves are obtained for y = 0.9 and o, =0,
60, 100 and 150 ergs/cm2 as is shown in Figure 6. See also Table VII. The

relative maxima are higher and "sharper" than the corresponding vy = % curves,

and they have moved to higher temperature. For y = 0.99, the analogous
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curves, shown in Figure 7, exhibit 2 values which are unrealistically large as
well as maxima which are extremely "sharp".

Thus, from the graphs, we see that the ? anomaly becomes more pronounced
but moves to higher temperature as v increases for a fixed nonzero value of

o. That is, although the relative maximum in 2 vs. T can appear at some Af >

%9 when aé is nonzero, the maximum becomes less pronounced as it moves to
lower temperature upon a decrease in y. Our model, then, does pot fail at
high supercooling, but does exhibit anomalous behavior for temperatures
corresponding to values of Af "just”™ greater and "just" less than %g‘ This
undesirable behavior is pronounced for large values of y and is more
pronounced for larger values of o, for a given 7.

We can easily rationalize mathematically how our calculated ? vs. T
curves can rise with decreasing T for some Af > 2§ when o, is nonzero. Recall

that the expression for 22 (1), namely

fzozs (2.TydR + [, 25,.(2,TYdz
2, 8814 2,511 (4

2(2) T) -
( ffos emyar+ [ s.o(e.myaz
11 ) B 20 II =

contains two different integrands S;(£,T) and SII(E,T). Depending on o, 7,
and T, the contribution of the integrals involving SI(I,T) to 2(2)(T) may
outweigh the contribution of the integrals involving SII(I,T), and in some

cases, our calculations show that to a very good approximation

2o
[0 ps_(2,T)ar
(2) 21 I
YN = 7, with £, approaching infinity.
f£1 S;(£,T)de

But this is our expression for 2(1)(T) for the interval Af =< %g, and the
results of our calculations using 1(1)(T) have been found to differ little
from results using I(LH)(T), i.e. the LH theory. Not unexpectedly then,

2(2)(T) can increase with decreasing T for some Af > %g. We note that the
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numerator of SI(R,T), like the numerator of S(LH)(I,T), contains the factor Ag

o C' o-DE(20-7alE) /KT 110

the form of which has been assoclated wit increascs

in 2 with decreasing T.

X. CONCLUSIONS

We have constructed a model of polymer crystallization which extends the
LH theory by excluding negative free energy barriers, and we have shown that
the §4 catastrophe of the LH theory is related to the failure to exclude these
negative barriers. Our results show that the new model is more consistent
with experimental behavior at very high supercooling.

Our results with oy ™ 0 clearly indicate that the 2 anomaly in our
model--and in part the 6{ catastrophe of the LH thecry--are associated with
the interval Af < %g and are thus connected to the expression A¢1 + El - 2abaé
+ 2bfo - vabiAf. The 2 anomaly also appears to be connected to this
expression even when o! » 0, i.e. even when the maximum in ? vs. T occurs at

e
a temperature for which Af exceeds 22. Although high values of ¥y and ¢y are

a
considered unrealistic as has been e1uc1dated6 recently, however, there is no
guarantee that the LH theory as well as our extension of it has not falled to
incorporate an as yet unknown constraint or feature which would improve the
model results at high y values. For example, high vy values may be
unrealistic, but the 2 values for high 7y from an improved model may simply be
unrealistically large but nevertheless monotonically decreasing with
decreasing T for all T.

In conclusion, we hope to extend our modification of the LH approach to

polymer crystallization to treat the interesting systems which interact with

an applied electric field.
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Figure 1(a).

Figure 1(b).

Figure 2.

Figure 3(a).

Figure 3(b).
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FIGURE CAPTIONS

Plots of Average Lamellar Thickness (A) vs. Temperature (K)
for vy = 0, %, and %, each with aé =0 and 4§ = y. See Section

IX for a, b, o, o, T?, and Ah which are the same for all of

e’ n
the figures. At T = 4333 K (f.e. Af = 2%) a4, = 0.

For T2 433} K, A, 2 0 and $ = 7 and X = 7[935].

A

For T = 433} K, Ap; < 0 and $ = 7(—22) and A = 7.

Plots of Average Lamellar Thickness (A) vs. Temperature (K)
for v = 0, %, %. and %, each with Q = ¥, reproduced from the

Lauritzen-Hoffman Model (Reference 1); plots are independent

?
of gg-

Plots of Average Lamellar Thickness (A) vs. Temperature (K)
for ol = 0, 60, 100, and 150 ergs/cm’, each with § = 7 = 1.
Each open cirle designates the point (20, Ty) at which

A¢1(2 T) = 0. For T=T,, 44 20, ¥ = v, and

20!
20
. For T<Tp, Ay <0, ¢ = 7[._2 + ]
[Zaba 'y 2bleo ] 0 1= 2Af anf

and A = v,

Plots of Average Lamellar Thickness (A) vs. Temperature (K)

for v = %, 2, 0.90, and 0.95, each with o2 = 0 and 4 - 7.
- - 4331

As in Figure 1(a), A¢1 0 at T 4333 K.

Plots of Average Lamellar Thickness (A) vs. Temperature (K)

for ¢p = % .90, and .95, each with ﬁ = %, reproduced from

3
] 40
the Lauritzen-Hoffman Model (Reference 1); plots are
independent of o,

Plots of Average Lamellar Thickness (A) vs. Temperature (K)
for § = 4y = .99 and g, = 0. As in Figure 1(a),

Af) = 0 at T = 433% K.




Figure 5.

Figure 6.

Figure 7.
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Plots of Average Lamellar Thickness (A) vs. Temperature (K)
for of = 0, 60, 100, and 150 ergs/cn’, each with § = y = 3.
As in Figure 2, each open circle identifies the temperature Tg

at which A¢1(2,T) = 0.

Plots of Average Lamellar Thickness (A) vs. Temperature (K)
for o} = 0, 60, 100, and 150 ergs/cu’, each with § = y = .90.
As in Figure 2, each open circle identifies the temperature Ty
at which A¢1(2, T) = 0.

Plots of Average Lamellar Thickness (A) vs. Temperature (K)
for o) = 0, 60, 100 and 150 ergs/cm®, each with § = v = .99,
For o/ = 0, 60, 100, and 150 ergs/cm’, T, = 433% K, 432.2 &,
432.1 K, and 432.0 K, respectively. As in Figure 2, TO is the
temperature at which A¢1(Z,T) - 0.
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TABLE CAPTIONS

Average Lamellar Thickness (A) as a function of Temperature (K)
for y = 0 and for v = %, each with aé = 0 and § = y. See Figure

1(a). See Section IX for a, b, o, Ogr Tm' and Ah, which are the

same for all of the tables.

Average Lamellar Thickness (A) as a function of Temperature (K)
for ¢ = % with $ = ¢y, reproduced from the Lauritzen-Hoffman

(LH) Model (Reference 4); data is independent of o See Figure
1(b).

Average Lamellar Thickness (A) as a function of Temperature (K)
for v = %, # =1, and Og = 0.

Average Lamellar Thickness (A) as a function of Temperature (K)
for o, = 60, 100, and 150 ergs/cm®, each with 0 = y = 5. See
Figure 2.

Average Lamellar Thickness (A) as a function of Temperature (K)
for v = .90 with aé =0 anq § = yv. See Figure 3(a).

Average Lamellar Thickness (A) as a function of Temperature (K)

for ¥ = .90 with $ = i, reproduced from the Lauritzen-Hoffman (LH)

Model (Reference 4); data is independent of aé. See Figure 3(b).

Average Lamellar Thickness (A) as a function of Temperature (K)
for o/ = 60, 100, and 150 ergs/cm’, each with § = y = .90.
See Figure 6,
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Table I. Aversge Lameller Thickness (X&)
vs. Temperature (X)

TEMP. (K} PsisGammas0 Gammaae1/2

485.000 234.383 235.303
480.000 178.380 179.781
475.000 144.660 146.556
470.000 122.074 124.507
465.000 105.8687 108.867
460.000 93.652 97.253
455.000 84.105 88.342
450.000 76.429 81.344
445.000 70.115 75.762
440.000 64.826 71.267
435.000 60.328 87.641
430.000 5§6.451 63.528
425.000 §3.072 §9.481
420.000 §0.100 §5.988
415.000 47.463 §2.941
410.000 45.105 $0.258
S 405.000 42.984 47.877
400.000 41.064 45.744
385.000 30.316 43.821
380.000° 37.718 42,077
385.000 36.251 40,484
380.000 34.897 3p.023
375.000 33.644 37.676
370.000 32.480 36.429
365.000 31.386 35.270
360.000 30.382 34.188
355.000 29.433 33.176
350.000 28.540 32.225
345.000 27.700 31.329
340.000 26.907 30.484
335.000 26.187 28.683
330.000 25.446 28.924
325.000 24.772 28.201
320.000 24,130 27.513
315.000 23.518 26.855
310.000 22.935 26.226
305.000 22.377 25.624
300.000 21.842 25.045
295.000 21.332 24.488
290.000 20.841 23.953
285.000 20.3689 23.437
280.000 19.915 22.938
275.000 18.479 22.456
270.000 19.057 21.990
265.000 18.651 21.537
260.000 18.258 21.089
255.000 17.878 20.673
250.000 17.511 20.259
245.000 17.185 19.856
240.000 16.809 19.463

235.000- 16.475 19.081




Table II. Average Lamellar Thickness (R) vs. Temperature (K)

TEMP. (K) LH Psini/2
485.000 235.785
480.000 180.224
475.000 146.926
470.000 124.780
465.000 109.027
460.000 97.290
455.000 88.251
450.000 81.124
445.000 75.412
440.000 70.789
435.000 67.037
430.000 64.009
425.000 61.610
420.000 59.786
415.000 58.519
410.000 57.832
405.000 57.800
400.000 ' §8.577
305.000 60.458
360.000° 64.019
385.000 70.484 :
380.000 82.999
375.000 112.171
370.000 232.547

[» .}

365.000




Table III.

TEMP. (K)

495.000
490.000
485.000
480.000
475.000
470.000
465.000
460.000
455.000
450.000
445.000
440.000
435.000
430.000
425.000
420.000
415.000
410.000
405.000
400.000
395.000
390.000
385.000
380.000
375.000
370.000
365.000
360.000
355.000
350.000
345.000
340.000
335.000
330.000
325.000
320.000
315.000
310.000
305.000
300.000
295.000
280.000
285.000
280.000
275.000
270.000
265.000
260.000
255.000
250.000
245.000
240.000
235.000

A
verage Lamellar Thickness (£) vs. Temperature (K)

Thetast
Gamma=1/2

675.848
230.877
142.184
104.542
84.037
71.460
63.333
56.368
50.779
46.332
42.690
-39.639
37.036
34.778
32.786
31.035
29.454
28.022
26.716
25.516
24.405
23.373
22.407
21.501
20.646
19.836

18.067



Table IV. Average Lamellar Thickness (R) vs. Temperature (K)

Gamma 9,

*  TEMP. (K) 0.5 / 60 0.5 // 100 0.5 // 150
485.000 235.303 235.303 235.303
480.000 179.781 179.781 179.781
475.000 146.556 146.556 146.556
470.000 124.507 124.507 124.507
465.000 108.867 108.867 108.867
460.000 97.253 g7.253 87.253
455.000 88.342 88.342 88.342
450.000 81.344 81.344 81.344
445,000 75.762 75.762 75.762
440.000 71.287 71.267 71.267
435.000 67.641 67.641 67.641
430.000 64.735 64.735 64.735
425.000 62.454 62.454 62.454
429.000 60.723 60.743 60.743
415.000 59.214 59.577 59.584
410.000 57.3086 §8.874 58.005
405.000 54.856 §8.337 58.984 )
400.000 52.149 §7.582 §8.533
395.000 49.469 56.411 60.296
380.000 : 46.971 54.852 60.918
385.000 44.708 §3.035 61.120
380.000 42.683 51.085 60.800
375.000 40.874 49.136 80.003
370.000 39.252 47.220 . 58.842
365.000 37.791 45,385 5§7.434
360.000 36.466 43.648 55.882
355.000 35.253 42.015 54.261
350.000 34.136 40.486 52.625
345.000 33.100 39.056 51.009
340.000 32.131 37.719 49.436
335.000 31.219 36.468 47.918
330.000 30.358 35.285 46.462
325.000 29.541 34.194 45.072
320.000 28.766 33.159 43.746
315.000 28.028 32.183 42.485
310.000 27.324 31.262 41.286
305.000 26.652 30.390 40.148
300.000 26.009 29.564 39.059
285.000 25.392 28.778 38.025
290.000 24,799 28.031 37.040
285.000 24.229 27.318 36.101
280.000 23.681 26.637 35.204
275.000 23.152 25.985 34.348
270.000 22.641 25.360 33.526
265.000 22.147 24.760 32.740
260.000 21.669 24.184 31.986
255.000 21.206 23.628 - 31.263
250.000 20.756 23.093 30.567
245.000 20.320 22.576 29.898
240.000 16.896 22.076 29.253

235.000 19.484 21'.593 28.631




Table V. Average Lamellar Thickness (&'
vs. Temperature (K)

TEMP. (K}  Gamma=0.90

485.000 236.013
480.000 180.939
475.000 148.300
470.000 127.027
465.000 112.435
460.000 102.279
455.000 95.475
450.000 91.672
445,000 91.275
440.000 96.119
435.000 112.616
430.000 117.625
425.000 109.730
420.000 103.882
415,000 $9.316
410.000 95.563
405.000 82.353
400.000 89.528
395.000 86.992
390.000 84.676
385.000 82.538 °
380.000 80.545
375.000 78.673
370.000 76.805
365.000 75.225
360.000 73.622
355.000 72.087
350.000 70.612
345.000 69.190
340.000 87.817
335.000 66.486
330.000 685.194
325.000 63.938
320.000 62.714
315.000 61.519
310.000 80.352
305.000 58.210
300.000 58.080
295.000 56.992
290.000 §5.913
285.000 54.853
280.000 §3.809
275.000 52.782
270.000 51.769
265.000 50.770
260.000 49.784
255.000 48.810
250.000 47.847
245.000 46.895
240.000 ° 45.953

235.000 45.021
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Table VI. Aversge Lamellar Thickness (£) vs. Temperature (K)

485.000 237.166
480.000 182.177
475.000 149,552
470.000 128.225
465.000 113.507
460.000 103.129
455,000 85.962
450.000 81.560
445.000 90.139
440.000 93.098
435.000 105.777
430.000 160.924

425.000 o]




